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Abstract. We have designed a simple method to place particles on lattices, concentric shells and
icosahedral concentric layers for minimizing the total energy of Lennard-Jones clusters, approxim-
ately, by analytical means. The most significant difference of our schemes from others is the dramatic
reduction of parameters, which allows the study of large clusters, not possible otherwise. We present
the derivation of formulae for minimal per-particle energy and for inter-particle distance. We also
present their asymptotic values for large number of particles.
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1. Introduction

Many people [1–10] have been working on the numerical minimization of the
energy of systems consisting of particles interacting under the Lennard-Jones po-
tential,

U(a) = 1

a12
− 2

a6
,

of the so-called Lennard-Jones clusters. We have designed a simple method which
renders the energy as a single parameter and makes the energy trivial to minim-
ize. The results not only give an asymptotic understanding of the system but also
provides excellent initialization for CPU-intense numerical minimization.

We illustrate the methods by doing the calculation on lattices in one, two and
three dimensions, as well as on spheres in two and three dimensions and on icosa-
hedra in three dimensions. We also compare our results with those obtained by a
different method [11].

2. Derivation of interactions

We employ a similar procedure to all cases. First, express the position of each
particle with appropriate coordinates, then, find the distance between two arbitrary
particles, and finally, obtain the total energy of the system.
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2.1. FOR PARTICLES ON LATTICES

In one dimension:We indicate the position of an arbitrary particle byai = ia

wherea is the distance between two consecutive particles andi ranges from 1 to
N , N being the total number of particles. The distance between a pair(i, j) is
aij = (i − j)a and the total energy ofN particles is then

E(a) = 1

2

 1

a12

N∑
i 6=j=1

1

(i − j)12
− 1

a6

N∑
i 6=j=1

2

(i − j)6

 .
Define two functionsF(N) andG(N)

F(N) =
N∑

i 6=j=1

1

(i − j)12
,

G(N) =
N∑

i 6=j=1

1

(i − j)6 .

E can now be written as

E(a) = 1

2

(
1

a12
F(N)− 2

a6
G(N)

)
. (1)

This expression is general for all of six cases we discuss: 1D, 2D and 3D lattices,
2D and 3D sphere, and 3D icosahedron. The specific form ofF(N) andG(N)
depends on the dimension and on the configuration of the problem. In fact, since
the parametera always factorizes out in the expression for the distance, we can
generalize Equation (1). For any pair-wise potential of the form

U(a) = R(a)− A(a), (2)

the corresponding total energy form is

E(a) = 1

2
(R(a)F (N)− A(a)G(N)) (3)

Therefore, the problem lies in finding the analytical forms forF(N) andG(N).
These functions are very complicated summations whose indexes are implicit func-
tions of N and of previous indexes. It is however simple to use a computer to
evaluateF(N) andG(N). That is how we obtained our test numerical results.
These results were then fitted into the curves that were numerically reasonable
rather than physically significant.

Figure 1. One dimensional lattice. The only parameter isa, the inter-particle distance.
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For Lennard-Jones clusters,a0, the value of parametera at whichE is minimal
is

a0 =
(
F(N)

G(N)

)1/6

, (4)

and the associated minimal energy per particle is

ε = −1

2

G2(N)

NF(N)
. (5)

In two dimensions:Take two points of our lattice each labeled by two coordinates
so that we haveaαβ = (αa, βa) andaγρ = (γ a, βa), the distance between the
two is then

aαβγρ =
√
(αa − γ a)2+ (βa − ρa)2

a is factorized out, leaving

aαβγρ = a
√
α2+ γ 2+ β2 + ρ2− 2αγ − 2βρ

We defineF(N) andG(N) as before:

F(N) =
I∑

α,β,γ,ρ=0

(α2+ γ 2+ β2+ ρ2− 2αγ − 2βρ)−6

whereI = √N − 1 andα 6= γ if β = ρ andβ 6= ρ if α = γ

G(N) =
I∑

α,β,γ,ρ=0

(α2+ γ 2+ β2+ ρ2− 2αγ − 2βρ)−3

whereI = √N − 1 andα 6= γ if β = ρ andβ 6= ρ if α = γ .

Figure 2. Two dimensional lattice. The only parameter isa, the inter-particle distance along
the two axes.
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Figure 3. Three dimensional lattice. The only parameter isa.

In three dimensions:Each of the functionsF(N) andG(N) consists of six
sums for the three dimensional case. Take two pointsaαβγ = (αa, βa, γ a) and
aσρδ = (σa, ρa, δa) their distance is

aαβγ σρδ =
√
(αa − σa)2+ (βa − ρa)2+ (γ a − δa)2

a is factorized out leaving

aαβγ σρδ = a
√
α2+ σ 2+ β2+ ρ2+ γ 2+ δ2− 2ασ − 2βσ − 2βρ − 2γ δ

F(N) andG(N) are now:

F(N) =
I∑

α,β,γ,σ,ρ,δ=0

(α2+ σ 2+ β2+ ρ2+ γ 2+ δ2− 2ασ − 2βρ − 2γ δ)−6

G(N) =
I∑

α,β,γ,σ,ρ,δ=0

(α2+ σ 2+ β2+ ρ2+ γ 2+ δ2− 2ασ − 2βρ − 2γ δ)−3

whereI = 3
√
N − 1 and any two equal points are excluded from summation.

2.2. FOR PARTICLES ON SHELLS OF A SPHERE

In two dimensions:The particles are distributed along concentric rings. The radius
of the i-th ring, counted outward from the center, isia and the distance along the
arc between two neighboring particles in one particular ring is equivalent for all
particles, and on all rings, and it is(π/3)a. This way, the number of particles in
ring i is 6i. The position of any particle is defined by its ring numberi and its
location along the arc-length of its ring starting from an arbitrary north pole which
is the same for all rings. The range of this last parameter is a function of the first.
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Figure 4. Particles on concentric rings. The parameter isa, the radial distance between two
consecutive rings and the approximate nearest neighbor distance for any particle.

Obviously, we can vary the distances between the successive rings and rotate each
ring by a certain amount for better minimization at added complexity.

In polar coordinates we have

aiα =
(
ia,

απ

3i

)
whereα = 0 . . . 6i − 1.

Given two pointsaiα andajβ , the distance between them is

aiαjβ = a
√
i2+ j2− 2ij cos

(
π

3

(
α

i
− β
j

))
Write fiαjβ = aiαjβ/a, thenF(N) andG(N) can be written as

F(N) =
I∑
i=1

6i−1∑
α=0

I∑
j=1

6j−1∑
β=0

1

f 12
iαjβ

G(N) =
I∑
i=1

6i−1∑
α=0

I∑
j=1

6j−1∑
β=0

1

f 6
iαjβ

whereI is defined implicitly by 6(
∑I

k=1 k)+N . Note the fact that we need to fill
all rings imposes a constraint on what values ofN can be used to evaluateε.

In order to include the one necessary particle at the center, we must make a
small modification toF(N) andG(N) to obtain the complete result,

F(N) =
I∑
i=1

6i−1∑
α=0

I∑
j=1

6j−1∑
β=0

1

f 12
iαjβ

+ 2
I∑
i=1

6i−1∑
α=0

1

i12

G(N) =
I∑
i=1

6i−1∑
α=0

I∑
j=1

6j−1∑
β=0

1

f 6
iαjβ

+ 2
I∑
i=1

6i−1∑
α=0

1

i6
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Figure 5. Cross section of the sphere. The lines represent planes that cut the sphere in rings.
Using the method of the 2D spheres (i.e. rings), particles are then distributed in the rings. In
this picture there are two shells.

In three dimensions:Fixing a north pole the shells are then cut into rings per-
pendicular to this south-north line. The spacing of the rings, as measured along
the arc of a geodesic that goes through both south and north poles, is fixed and
equals(π/3)a, wherea is the radius of the smallest shell. The number of these
rings depends on the radius of the shell, for a shell of radiusia there are 3i + 1
rings (including the top and bottom rings which shrink to a dot and thus include
one particular each). Each of these rings is then treated as in the previous 2D case,
introducing a new parameterα which indicates which ring we are treating starting
from north pole whereα = 0 and going down to the south pole whereα = 3i, for
shell i.

If we wanted the separation between adjacent particles along the ring to be
exactlya, then the number of particles in thei-th ring would be 2πia| sin(πα3i )|.
Obviously, we have to round the whole expression to obtain an integer for the
number of particles. The distance along the arc between adjacent particles in the
i-th ring then becomes

2πia
∣∣sin

(
πα
3i

)∣∣[
6i sin

(
πα
3i

)]
where [ ] is the usual operator for rounding to the nearest integer and taking ab-
solute value. A particle is then localized completely by its shell numberi, its ring
numberα and its position on the ring that we labelβ. In spherical coordinates we
have

αiαβ =
(
ia,

απ

3i
,

2πβ[
6i sin

(
πα
3i

)])
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Figure 6. 3D perspective of the first shell.

where the parameters range as follows

i = 1 . . . I

α = 0 . . . 3i

β = 0 . . .
[
6i sin

(πα
3i

)]
− 1

and whereI is an implicit function ofN . We did not obtain the analytical ex-
pression but simply computedN numerically. To simplify things we denote the
coordinates of a particle asaiαβ = (ia, θiα, φiαβ). The distance between two
particleaiαβ andajγ σ is

aiαβjγ σ = ((ia sinθiα cosφiαβ − ja sinθjγ cosφjγσ )
2+ (ia sinθiα sinφiαβ

− ja sinθjγ sinφjγσ )
2+ (ia cosθiα − ja cosθjγ )

2)1/2

which simplifies to

aiαβjγ σ = a
√
i2 + j2− 2ij [sinθiα sinθjγ cos(φi,αβ − φj,γ σ )+ cosθiα cosjγ ]

Definefiαβjγ σ = aiαβjγ σ /a and we obtain forF(N) andG(N) the following

F(N) =
I∑

i,j=1

α=3i,γ=3j∑
α,γ=0

βmaxρmax∑
β,ρ=0

1

f 12
iαβjγ σ

G(N) =
I∑

i,j=1

α=3i,γ=3j∑
α,γ=0

βmaxρmax∑
β,ρ=0

1

f 6
iαβjγ σ
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Whereβmax andρmax refer to the limits mentioned above. Adding the particle at
the center of the structure we reviseF(N) andG(N),

F(N) =
I∑

i,j=1

α=3i,γ=3j∑
α,γ=0

βmaxρmax∑
β,ρ=0

1

f 12
iαβjγ σ

+ 2
I∑
i=1

3i∑
α=0

βmax∑
β=0

1

i12

G(N) =
I∑

i,j=1

α=3i,γ=3j∑
α,γ=0

βmaxρmax∑
β,ρ=0

1

f 6
iαβjγ σ

+ 2
I∑
i=1

3i∑
α=0

βmax∑
β=0

1

i6

2.3. FOR PARTICLES ON ICOSAHEDRAL SHAPED SHELLS

In three dimensions:We have also tried a configuration consisting of concentric
layers of icosahedral shape. An algorithm was developed to distribute particles
on the surface of each of the twenty triangular faces of each layer. As previ-
ously done, a parametera was defined and factored out of the expression for
the distance between two given particles rendering the minimization of the energy
trivial to compute. In our constructiona was the length of the side of the smallest
icosahedron.

The way particles were distributed in each triangular face is shown in Figure 7.
Each face of then-th layer containedn concentric triangles and one particle at the
center. The distance between any two consecutive particles on the same triangle
is a. The length of any side of any triangle is always a multiple ofa. In this way,
particles are distributed uniformly on each layer.

The algorithm for this configuration was much more complicated than for the
previous cases, however it did not improve the results obtained before by the simple
lattice scheme.

The convergent values forε anda0 in the icosahedron case are−4.722 and 1.674
respectively. While the correspondingε anda0 for the cubic lattices are−5.271 and

Figure 7. Distribution of particles on one of the 20 triangular faces of fourth icosahedral layer.
The distance between every two particles along one side of any given triangle isa.
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Figure 8. ε versusN for 2D lattice and rings. As shown in this figure, the minimal energy
obtained by the spherical scheme is much lower than that obtained by the lattice scheme.

0.953, and−6.225 and 0.889 for the shells. Obviously,ε for the icosahedron is the
highest. For two particlesa = 1 minimizes the total energy. For largeN , in the
case of shells we founda = 0.889.

However, in the case of the icosahedron all particles have to take different values
as the distances to their nearest neighbors because of the nature of icosahedron and
our filling schemes, resulting in difficulty for an orchestrated action to minimize the
total energy. We have, therefore, chosen not to include the details of these results
for this configuration.

3. Numerical results

We have performed calculations on five of the six cases discussed in Section 2: 2D
and 3D lattices, 2D and 3D spheres, and 3D icosahedron (neglecting the simple 1D
lattice case). In each of these cases we have results for systems with as many as
50,000 particles. These results are shown in Tables 1, 2 and 3. The figures 8 to 20
depicts these results in graphical details for comparison and further analysis.
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Table I. Resultsε anda0 for the 2D lattice.

N ε a0 N ε a0 N ε a0

4 −1.120155 0.991232 1089 −2.563724 0.978266 4096 −2.615208 0.97789

9 −1.587178 0.986447 1156 −2.566839 0.978243 4225 −2.616055 0.977882

16 −1.839321 0.984123 1225 −2.569777 0.978221 4489 −2.617672 0.977871

25 −1.996584 0.982754 1296 −2.572553 0.978201 4356 −2.616876 0.977876

36 −2.103915 0.981854 1369 −2.575181 0.978181 4624 −2.618445 0.977865

49 −2.181798 0.981216 1444 −2.577571 0.978163 4761 −2.619196 0.977860

64 −2.240876 0.980741 1521 −2.580034 0.978146 4900 −2.619925 0.977854

81 −2.287221 0.980373 1600 −2.582280 0.978129 5041 −2.620634 0.977849

100 −2.324545 0.980080 1681 −2.584417 0.978114 5184 −2.621324 0.977844

121 −2.355248 0.979841 1764 −2.586452 0.978099 5329 −2.621994 0.977839

144 −2.380947 0.979642 1849 −2.588394 0.978084 5476 −2.622647 0.977834

169 −2.402772 0.979475 1936 −2.590248 0.978071 5625 −2.623282 0.977830

196 −2.421538 0.979331 2116 −2.593715 0.978045 5776 −2.623900 0.977825

225 −2.437846 0.979207 2209 −2.595339 0.978034 5929 −2.624503 0.977821

256 −2.452149 0.979099 2304 −2.596895 0.978022 6084 −2.625090 0.977817

289 −2.464795 0.979003 2401 −2.598388 0.978011 6241 −2.625662 0.977813

324 −2.476056 0.978918 2500 −2.599822 0.978001 6400 −2.626220 0.977809

400 −2.495245 0.978774 2601 −2.601200 0.977991 6561 −2.626764 0.977805

441 −2.503485 0.978713 2704 −2.602525 0.977981 6724 −2.627295 0.977801

484 −2.510986 0.978657 2809 −2.603800 0.977972 6889 −2.627813 0.977797

529 −2.517841 0.978606 2916 −2.605028 0.977963 7056 −2.628319 0.977793

576 −2.524131 0.978559 3025 −2.606212 0.977954 7225 −2.628813 0.977790

625 −2.529924 0.978516 3136 −2.607354 0.977946 7396 −2.629296 0.977786

676 −2.535275 0.978476 3249 −2.608456 0.977938 7569 −2.629768 0.977783

729 −2.540233 0.978439 3364 −2.609520 0.97793 7744 −2.630229 0.977779

784 −2.544841 0.978405 3481 −2.610548 0.977923 7921 −2.630679 0.977776

841 −2.549134 0.978373 3600 −2.611542 0.977915 8100 −2.631120 0.977773

900 −2.553143 0.978344 3721 −2.612503 0.977908 8281 −2.631551 0.977770

961 −2.556895 0.978316 3844 −2.613434 0.977901 8464 −2.631972 0.977767

1024 −2.560415 0.978290 3969 −2.614335 0.977895 8649 −2.632385 0.977764
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Table II. Resultsε anda0 for the 2D rings.

N ε a0 N ε a0 N ε a0

7 −1.790695 0.996435 5167 −2.809833 0.937678 19927−2.834073 0.937437

19 −2.049368 0.989537 5419 −2.811004 0.937665 20419−2.834375 0.937435

37 −2.253259 0.956292 5677 −2.812120 0.937653 20917−2.834670 0.937432

61 −2.382833 0.949874 5941 −2.813186 0.937641 21421−2.834958 0.937430

91 −2.469165 0.946318 6487 −2.815177 0.937620 21931−2.835239 0.937427

127 −2.529984 0.944138 6769 −2.816109 0.937610 22447−2.835514 0.937425

169 −2.574853 0.942701 7057 −2.817002 0.937600 22969−2.835782 0.937423

217 −2.609196 0.941699 7351 −2.817859 0.937591 23497−2.836044 0.937420

271 −2.636270 0.940970 7651 −2.818681 0.937583 24031−2.836300 0.937418

331 −2.658132 0.940422 7957 −2.819470 0.937575 24571−2.836551 0.937416

397 −2.676139 0.939997 8269 −2.820230 0.937567 25117−2.836795 0.937414

469 −2.691216 0.939661 8587 −2.820960 0.937560 25669−2.837035 0.937412

547 −2.704020 0.939389 8911 −2.821664 0.937553 26227−2.837269 0.937410

631 −2.715025 0.939167 9241 −2.822341 0.937546 26791−2.837499 0.937408

721 −2.724581 0.938981 9577 −2.822995 0.937539 27361−2.837723 0.937407

817 −2.732956 0.938825 9919 −2.823625 0.937533 27937−2.837943 0.937405

919 −2.740355 0.938691 10267 −2.824234 0.937527 28519−2.838159 0.937403

1141 −2.752832 0.938477 10621 −2.824822 0.937522 29107−2.838370 0.937401

1261 −2.758139 0.938390 10981 −2.825390 0.937516 29701−2.838576 0.937400

1387 −2.762943 0.938314 11347 −2.825940 0.937511 30301−2.838779 0.937398

1519 −2.767312 0.938246 11719 −2.826471 0.937506 30907−2.838977 0.937397

1657 −2.771301 0.938185 12097 −2.826986 0.937501 31519−2.839172 0.937395

1801 −2.774959 0.938131 12481 −2.827485 0.937496 32137−2.839363 0.937393

1951 −2.778324 0.938082 12871 −2.827968 0.937492 32761−2.839550 0.937392

2107 −2.781431 0.938038 13267 −2.828437 0.937487 33391−2.839733 0.937390

2269 −2.784308 0.937998 13669 −2.828891 0.937483 34027−2.839913 0.937389

2437 −2.786979 0.937962 14077 −2.829332 0.937479 34669−2.840090 0.937388

2611 −2.789466 0.937928 14491 −2.829761 0.937475 35317−2.840263 0.937386

2791 −2.791786 0.937898 14911 −2.830177 0.937472 35971−2.840433 0.937385

2977 −2.793957 0.937870 15337 −2.830581 0.937468 36631−2.840601 0.937384

3169 −2.795992 0.937844 15769 −2.830974 0.937464 37297−2.840765 0.937382

3367 −2.797904 0.937820 16207 −2.831356 0.937461 37969−2.840926 0.937381

3571 −2.799703 0.937798 16651 −2.831728 0.937458 38647−2.841084 0.937380

3781 −2.801399 0.937777 17101 −2.832090 0.937454 39331−2.841240 0.937350

3997 −2.803000 0.937758 17557 −2.832442 0.937451 40021−2.841392 0.937340

4219 −2.804515 0.937740 18019 −2.832786 0.937448 40717−2.841542 0.937340

4447 −2.805950 0.937723 18487 −2.833120 0.937445 41419−2.841690 0.937340

4681 −2.807311 0.937707 18961 −2.833446 0.937443 42127−2.841835 0.937340

4921 −2.808604 0.937692 19441 −2.833763 0.937440 42841−2.841978 0.937340
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Table III. Resultsε anda0 for the 3D cases. We also include the numerical results produced by a more
accurate minimization procedure.

3D sphere 3D Lattice Published numerical results

N ε a0 N ε a0 N ε

13 −3.192285 0.986488 8 −1.90962 0.981385 50 −4.89100

57 −3.795009 0.933200 27 −2.87743 0.971893 60 −5.09793

157 −4.479330 0.909165 64 −3.45409 0.966883 70 −5.24131

335 −4.945768 0.898804 125 −3.83547 0.963788 80 −5.35105

615 −5.249568 0.894296 216 −4.10605 0.961686 90 −5.47149

1022 −5.463666 0.892594 343 −4.30787 0.960165 100 −5.57040

1574 −5.626424 0.891092 512 −4.46416 0.959014 100 −5.65262

2298 −5.746206 0.890292 729 −4.58873 0.958111 120 −5.72518

3214 −5.830164 0.890078 1000 −4.69036 0.957385 130 −5.80978

4346 −5.911180 0.889441 1331 −4.77483 0.956788 140 −5.90125

5718 −5.964925 0.889470 1728 −4.84615 0.956289 150 −5.95540

7351 −6.022146 0.889060 2197 −4.90717 0.955865 200 −6.14593

9267 −6.062184 0.888996 2744 −4.95998 0.955500 250 −6.31918

11494 −6.097487 0.888964 3375 −5.00611 0.955184 300 −6.47369

14044 −6.130420 0.888798 4096 −5.04677 0.954906 400 −6.62608

16954 −6.156995 0.888775 4913 −5.08288 0.954660 561 −6.84919

20238 −6.181064 0.888764 5832 −5.11515 0.954441 923 −7.09937

23924 −6.203130 0.888747 6859 −5.14416 0.954245 1415 −7.28543

28026 −6.225377 0.888621 8000 −5.17040 0.954069

9261 −5.19423 0.953909

10648 −5.21597 0.953763

12167 −5.23589 0.953630

13824 −5.25421 0.953508

15625 −5.27111 0.953395
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Figure 9. ε versusN for 2D lattice; results
(crosses) and fit (line).

Figure 10. ε versus N for 2D rings; results
(crosses) and fit (line).

Figure 11.ε versusN for 2D rings; results and
fit.

Figure 12.a0 versusN for 2D lattice and rings.
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Figure 13. a0 versusN for 2D lattice;
results (crosses) and fit (lines). Figure 14.a0 versusN for 2D rings; results (crosses)

and fit (lines).

Figure 15.ε versusN for 3D lattice, sphere,
and published numerical results. Figure 16. ε versusN for 3D lattice; results

(crosses) and fit (line).
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Figure 17. ε versusN for 3D sphere; results
(crosses) and fit (line).

Figure 18. a0 versusN for 3D lattice and
sphere.

Figure 19.a0 versusN for 3D lattice; results
(crosses) and fit (line).

Figure 20.a0 versusN for 3D sphere; results
(crosses) and fit (line).
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4. Asymptotic results from the fits

The numerical results look very regular and thus it is tempting to fit them into
curves. For the energy, we propose two fitting formulae,εI and εII . We fit the
results for the 2D lattice and 2D rings byεI and other cases byεII . The purpose of
fitting specific case, by a special formula is to reduce fitting error. In each of these
formulae,ε∞ is the average per-particle energy atN → ∞, while α, β, εα, εβ
andεN have not found meaningful physical interpretations. For the inter-particle
distance, we fit in three different formula,aI , aII andaIII . In each of these formula
a∞ is the asymptotic value atN →∞ for the average distance. The 2D lattice fits
aI , the 2D rings fitaIII and both 3D cases, lattice and sphere, fitaII .

Formulae forε:
fit εI : ε(N) = ε∞ + εα

Nα
+ εβ

Nβ

fit εII : ε(N) = εN e−αNβ + ε∞
Formulae fora0:
fit aI : a0(N) = a∞ + aα

Nα
+ aβ

Nβ

fit aII : a0(N) = aN e−αNβ + a∞
fit aIII : a0(N) = a∞ + aα eαN + aβ

Nβ

See Tables 4 and 5 for the numerical values of the coefficients as well as for the
values ofχ2 indicating the accuracy of our fits.

Table IV. Results for the fittings forE.

ε fit χ2 ε∞ εα εβ εN α β

2D lattice εI 3.7·10−5 −2.66592 −2.65475 5.34049 −0.73700−0.54652

2D rings εI 5.5·10−6 −2.85726 −10.1903 4.24946 −1.59242−0.52626

3D lattice εII 1.4·10−4 −5.54535 69.5474 2.48452 0.08270

3D sphere εI 1.9·10−4 −6.50053 19.5521 −31.5291 −0.41310−0.86051

Table V. Results for the fittings fora0.

a0 fit χ2 a∞ aα aβ aN α β

2D lattice aI 2.7·10−9 0.977509 0.027648 1.82951 −0.516000−6.561650

2D ring aIII 8.7·10−6 0.937327 −6.92488 0.35603 −0.888498−0.081508

3D lattice aII 4.3·10−8 0.951598 12.5699 5.45265 0.498000

3D sphere aII 2.8·10−6 0.888979 0.692199 1.07462 0.233963
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5. Conclusions

We have designed a method to place particles on lattices, spheres and icosahedron
to minimize the energy of the Lennard-Jones clusters with very large numbers of
particles, approximately, by analytical approaches. Our schemes give the config-
uration of the clusters only for certain number of particles because of the filling
scheme we select. The energies for which our scheme do not give a configuration
are calculated by fitting.

Using our methods, we have obtained the asymptotic values for the average
per-particle energy and average inter-particle distance. As observed, the spherical
scheme produces the most accurate results among the three, which suggests the
clusters tend to form spherical structures.

The most significant part of our work is the drastic reduction of parameters for
the energy minimization of the Lennard-Jones clusters. Our methods can provide
quick initialization for more accurate numerical calculations on small clusters with
1000s of particles. Moreover, our methods can produce estimates for large clusters
that no other numerical means can do. Of course, our methods can be further
improved by introducing more parameters.
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